3.12.38 \(\int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^3} \, dx\) [1138]

3.12.38.1 Optimal result
3.12.38.2 Mathematica [A] (verified)
3.12.38.3 Rubi [A] (verified)
3.12.38.4 Maple [A] (verified)
3.12.38.5 Fricas [B] (verification not implemented)
3.12.38.6 Sympy [F]
3.12.38.7 Maxima [F(-2)]
3.12.38.8 Giac [A] (verification not implemented)
3.12.38.9 Mupad [B] (verification not implemented)

3.12.38.1 Optimal result

Integrand size = 27, antiderivative size = 175 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^3} \, dx=\frac {x}{b^3}-\frac {\left (2 a^4-a^2 b^2+2 b^4\right ) \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a^3 b^3 \sqrt {a^2-b^2} d}-\frac {\text {arctanh}(\cos (c+d x))}{a^3 d}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}+\frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))} \]

output
x/b^3-arctanh(cos(d*x+c))/a^3/d-1/2*(a^2-b^2)*cos(d*x+c)/a/b^2/d/(a+b*sin( 
d*x+c))^2+1/2*(3*a^2+2*b^2)*cos(d*x+c)/a^2/b^2/d/(a+b*sin(d*x+c))-(2*a^4-a 
^2*b^2+2*b^4)*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/a^3/b^3/d/( 
a^2-b^2)^(1/2)
 
3.12.38.2 Mathematica [A] (verified)

Time = 1.66 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.01 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^3} \, dx=\frac {-\frac {2 \left (2 a^4-a^2 b^2+2 b^4\right ) \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a^3 b^3 \sqrt {a^2-b^2}}+2 \left (\frac {c+d x}{b^3}-\frac {\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{a^3}+\frac {\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{a^3}\right )+\frac {\cos (c+d x) \left (2 a^3+3 a b^2+b \left (3 a^2+2 b^2\right ) \sin (c+d x)\right )}{a^2 b^2 (a+b \sin (c+d x))^2}}{2 d} \]

input
Integrate[(Cos[c + d*x]^3*Cot[c + d*x])/(a + b*Sin[c + d*x])^3,x]
 
output
((-2*(2*a^4 - a^2*b^2 + 2*b^4)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - 
b^2]])/(a^3*b^3*Sqrt[a^2 - b^2]) + 2*((c + d*x)/b^3 - Log[Cos[(c + d*x)/2] 
]/a^3 + Log[Sin[(c + d*x)/2]]/a^3) + (Cos[c + d*x]*(2*a^3 + 3*a*b^2 + b*(3 
*a^2 + 2*b^2)*Sin[c + d*x]))/(a^2*b^2*(a + b*Sin[c + d*x])^2))/(2*d)
 
3.12.38.3 Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.14, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.370, Rules used = {3042, 3370, 25, 3042, 3536, 3042, 3139, 1083, 217, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^4}{\sin (c+d x) (a+b \sin (c+d x))^3}dx\)

\(\Big \downarrow \) 3370

\(\displaystyle -\frac {\int -\frac {\csc (c+d x) \left (2 b^2+a \sin (c+d x) b+2 a^2 \sin ^2(c+d x)\right )}{a+b \sin (c+d x)}dx}{2 a^2 b^2}+\frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {\csc (c+d x) \left (2 b^2+a \sin (c+d x) b+2 a^2 \sin ^2(c+d x)\right )}{a+b \sin (c+d x)}dx}{2 a^2 b^2}+\frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {2 b^2+a \sin (c+d x) b+2 a^2 \sin (c+d x)^2}{\sin (c+d x) (a+b \sin (c+d x))}dx}{2 a^2 b^2}+\frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}\)

\(\Big \downarrow \) 3536

\(\displaystyle \frac {-\frac {\left (2 a^4-a^2 b^2+2 b^4\right ) \int \frac {1}{a+b \sin (c+d x)}dx}{a b}+\frac {2 b^2 \int \csc (c+d x)dx}{a}+\frac {2 a^2 x}{b}}{2 a^2 b^2}+\frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\left (2 a^4-a^2 b^2+2 b^4\right ) \int \frac {1}{a+b \sin (c+d x)}dx}{a b}+\frac {2 b^2 \int \csc (c+d x)dx}{a}+\frac {2 a^2 x}{b}}{2 a^2 b^2}+\frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}\)

\(\Big \downarrow \) 3139

\(\displaystyle \frac {-\frac {2 \left (2 a^4-a^2 b^2+2 b^4\right ) \int \frac {1}{a \tan ^2\left (\frac {1}{2} (c+d x)\right )+2 b \tan \left (\frac {1}{2} (c+d x)\right )+a}d\tan \left (\frac {1}{2} (c+d x)\right )}{a b d}+\frac {2 b^2 \int \csc (c+d x)dx}{a}+\frac {2 a^2 x}{b}}{2 a^2 b^2}+\frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\frac {4 \left (2 a^4-a^2 b^2+2 b^4\right ) \int \frac {1}{-\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )^2-4 \left (a^2-b^2\right )}d\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a b d}+\frac {2 b^2 \int \csc (c+d x)dx}{a}+\frac {2 a^2 x}{b}}{2 a^2 b^2}+\frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {2 b^2 \int \csc (c+d x)dx}{a}+\frac {2 a^2 x}{b}-\frac {2 \left (2 a^4-a^2 b^2+2 b^4\right ) \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{a b d \sqrt {a^2-b^2}}}{2 a^2 b^2}+\frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\left (3 a^2+2 b^2\right ) \cos (c+d x)}{2 a^2 b^2 d (a+b \sin (c+d x))}-\frac {\left (a^2-b^2\right ) \cos (c+d x)}{2 a b^2 d (a+b \sin (c+d x))^2}+\frac {\frac {2 a^2 x}{b}-\frac {2 \left (2 a^4-a^2 b^2+2 b^4\right ) \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{a b d \sqrt {a^2-b^2}}-\frac {2 b^2 \text {arctanh}(\cos (c+d x))}{a d}}{2 a^2 b^2}\)

input
Int[(Cos[c + d*x]^3*Cot[c + d*x])/(a + b*Sin[c + d*x])^3,x]
 
output
((2*a^2*x)/b - (2*(2*a^4 - a^2*b^2 + 2*b^4)*ArcTan[(2*b + 2*a*Tan[(c + d*x 
)/2])/(2*Sqrt[a^2 - b^2])])/(a*b*Sqrt[a^2 - b^2]*d) - (2*b^2*ArcTanh[Cos[c 
 + d*x]])/(a*d))/(2*a^2*b^2) - ((a^2 - b^2)*Cos[c + d*x])/(2*a*b^2*d*(a + 
b*Sin[c + d*x])^2) + ((3*a^2 + 2*b^2)*Cos[c + d*x])/(2*a^2*b^2*d*(a + b*Si 
n[c + d*x]))
 

3.12.38.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3370
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a^2 - b^2)*Cos[e + 
f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 1)/(a*b^2*d*f*(m + 
 1))), x] + (Simp[(a^2*(n - m + 1) - b^2*(m + n + 2))*Cos[e + f*x]*(a + b*S 
in[e + f*x])^(m + 2)*((d*Sin[e + f*x])^(n + 1)/(a^2*b^2*d*f*(m + 1)*(m + 2) 
)), x] - Simp[1/(a^2*b^2*(m + 1)*(m + 2))   Int[(a + b*Sin[e + f*x])^(m + 2 
)*(d*Sin[e + f*x])^n*Simp[a^2*(n + 1)*(n + 3) - b^2*(m + n + 2)*(m + n + 3) 
 + a*b*(m + 2)*Sin[e + f*x] - (a^2*(n + 2)*(n + 3) - b^2*(m + n + 2)*(m + n 
 + 4))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a 
^2 - b^2, 0] && IntegersQ[2*m, 2*n] && LtQ[m, -1] &&  !LtQ[n, -1] && (LtQ[m 
, -2] || EqQ[m + n + 4, 0])
 

rule 3536
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.) 
*(x_)])), x_Symbol] :> Simp[C*(x/(b*d)), x] + (Simp[(A*b^2 - a*b*B + a^2*C) 
/(b*(b*c - a*d))   Int[1/(a + b*Sin[e + f*x]), x], x] - Simp[(c^2*C - B*c*d 
 + A*d^2)/(d*(b*c - a*d))   Int[1/(c + d*Sin[e + f*x]), x], x]) /; FreeQ[{a 
, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.12.38.4 Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.37

method result size
derivativedivides \(\frac {-\frac {2 \left (\frac {\left (-\frac {1}{2} a^{3} b^{2}-2 a \,b^{4}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {b \left (2 a^{4}+7 a^{2} b^{2}+6 b^{4}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {a \,b^{2} \left (7 a^{2}+8 b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2}-\frac {a^{2} b \left (2 a^{2}+3 b^{2}\right )}{2}}{{\left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \right )}^{2}}+\frac {\left (2 a^{4}-a^{2} b^{2}+2 b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{2 \sqrt {a^{2}-b^{2}}}\right )}{a^{3} b^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{3}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{3}}}{d}\) \(240\)
default \(\frac {-\frac {2 \left (\frac {\left (-\frac {1}{2} a^{3} b^{2}-2 a \,b^{4}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {b \left (2 a^{4}+7 a^{2} b^{2}+6 b^{4}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {a \,b^{2} \left (7 a^{2}+8 b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2}-\frac {a^{2} b \left (2 a^{2}+3 b^{2}\right )}{2}}{{\left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \right )}^{2}}+\frac {\left (2 a^{4}-a^{2} b^{2}+2 b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{2 \sqrt {a^{2}-b^{2}}}\right )}{a^{3} b^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{3}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{3}}}{d}\) \(240\)
risch \(\frac {x}{b^{3}}-\frac {i \left (-4 i a^{3} b \,{\mathrm e}^{3 i \left (d x +c \right )}-i a \,b^{3} {\mathrm e}^{3 i \left (d x +c \right )}+8 i a^{3} b \,{\mathrm e}^{i \left (d x +c \right )}+7 i a \,b^{3} {\mathrm e}^{i \left (d x +c \right )}+6 a^{4} {\mathrm e}^{2 i \left (d x +c \right )}+7 b^{2} a^{2} {\mathrm e}^{2 i \left (d x +c \right )}+2 b^{4} {\mathrm e}^{2 i \left (d x +c \right )}-3 a^{2} b^{2}-2 b^{4}\right )}{\left (-i b \,{\mathrm e}^{2 i \left (d x +c \right )}+i b +2 a \,{\mathrm e}^{i \left (d x +c \right )}\right )^{2} a^{2} d \,b^{3}}+\frac {i a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a -a^{2}+b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, d \,b^{3}}-\frac {i \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a -a^{2}+b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{2 \sqrt {a^{2}-b^{2}}\, d b a}+\frac {i b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a -a^{2}+b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, d \,a^{3}}-\frac {i a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a +a^{2}-b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, d \,b^{3}}+\frac {i \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a +a^{2}-b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{2 \sqrt {a^{2}-b^{2}}\, d b a}-\frac {i b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a +a^{2}-b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, d \,a^{3}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d \,a^{3}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d \,a^{3}}\) \(643\)

input
int(cos(d*x+c)^4*csc(d*x+c)/(a+b*sin(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
1/d*(-2/a^3/b^3*(((-1/2*a^3*b^2-2*a*b^4)*tan(1/2*d*x+1/2*c)^3-1/2*b*(2*a^4 
+7*a^2*b^2+6*b^4)*tan(1/2*d*x+1/2*c)^2-1/2*a*b^2*(7*a^2+8*b^2)*tan(1/2*d*x 
+1/2*c)-1/2*a^2*b*(2*a^2+3*b^2))/(tan(1/2*d*x+1/2*c)^2*a+2*b*tan(1/2*d*x+1 
/2*c)+a)^2+1/2*(2*a^4-a^2*b^2+2*b^4)/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1 
/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2)))+1/a^3*ln(tan(1/2*d*x+1/2*c))+2/b^3*ar 
ctan(tan(1/2*d*x+1/2*c)))
 
3.12.38.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 479 vs. \(2 (166) = 332\).

Time = 0.52 (sec) , antiderivative size = 1042, normalized size of antiderivative = 5.95 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^3} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)/(a+b*sin(d*x+c))^3,x, algorithm="fricas" 
)
 
output
[1/4*(4*(a^5*b^2 - a^3*b^4)*d*x*cos(d*x + c)^2 - 4*(a^7 - a^3*b^4)*d*x + ( 
2*a^6 + a^4*b^2 + a^2*b^4 + 2*b^6 - (2*a^4*b^2 - a^2*b^4 + 2*b^6)*cos(d*x 
+ c)^2 + 2*(2*a^5*b - a^3*b^3 + 2*a*b^5)*sin(d*x + c))*sqrt(-a^2 + b^2)*lo 
g(-((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 - 2*(a*c 
os(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x 
+ c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) - 2*(2*a^6*b + a^4*b^3 - 3*a^2*b 
^5)*cos(d*x + c) + 2*(a^4*b^3 - b^7 - (a^2*b^5 - b^7)*cos(d*x + c)^2 + 2*( 
a^3*b^4 - a*b^6)*sin(d*x + c))*log(1/2*cos(d*x + c) + 1/2) - 2*(a^4*b^3 - 
b^7 - (a^2*b^5 - b^7)*cos(d*x + c)^2 + 2*(a^3*b^4 - a*b^6)*sin(d*x + c))*l 
og(-1/2*cos(d*x + c) + 1/2) - 2*(4*(a^6*b - a^4*b^3)*d*x + (3*a^5*b^2 - a^ 
3*b^4 - 2*a*b^6)*cos(d*x + c))*sin(d*x + c))/((a^5*b^5 - a^3*b^7)*d*cos(d* 
x + c)^2 - 2*(a^6*b^4 - a^4*b^6)*d*sin(d*x + c) - (a^7*b^3 - a^3*b^7)*d), 
1/2*(2*(a^5*b^2 - a^3*b^4)*d*x*cos(d*x + c)^2 - 2*(a^7 - a^3*b^4)*d*x - (2 
*a^6 + a^4*b^2 + a^2*b^4 + 2*b^6 - (2*a^4*b^2 - a^2*b^4 + 2*b^6)*cos(d*x + 
 c)^2 + 2*(2*a^5*b - a^3*b^3 + 2*a*b^5)*sin(d*x + c))*sqrt(a^2 - b^2)*arct 
an(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c))) - (2*a^6*b + a^4* 
b^3 - 3*a^2*b^5)*cos(d*x + c) + (a^4*b^3 - b^7 - (a^2*b^5 - b^7)*cos(d*x + 
 c)^2 + 2*(a^3*b^4 - a*b^6)*sin(d*x + c))*log(1/2*cos(d*x + c) + 1/2) - (a 
^4*b^3 - b^7 - (a^2*b^5 - b^7)*cos(d*x + c)^2 + 2*(a^3*b^4 - a*b^6)*sin(d* 
x + c))*log(-1/2*cos(d*x + c) + 1/2) - (4*(a^6*b - a^4*b^3)*d*x + (3*a^...
 
3.12.38.6 Sympy [F]

\[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^3} \, dx=\int \frac {\cos ^{4}{\left (c + d x \right )} \csc {\left (c + d x \right )}}{\left (a + b \sin {\left (c + d x \right )}\right )^{3}}\, dx \]

input
integrate(cos(d*x+c)**4*csc(d*x+c)/(a+b*sin(d*x+c))**3,x)
 
output
Integral(cos(c + d*x)**4*csc(c + d*x)/(a + b*sin(c + d*x))**3, x)
 
3.12.38.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^3} \, dx=\text {Exception raised: ValueError} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)/(a+b*sin(d*x+c))^3,x, algorithm="maxima" 
)
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.12.38.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.57 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^3} \, dx=\frac {\frac {d x + c}{b^{3}} + \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{3}} - \frac {{\left (2 \, a^{4} - a^{2} b^{2} + 2 \, b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} a^{3} b^{3}} + \frac {a^{3} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 4 \, a b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 7 \, a^{2} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 6 \, b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 7 \, a^{3} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 8 \, a b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, a^{4} + 3 \, a^{2} b^{2}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a\right )}^{2} a^{3} b^{2}}}{d} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)/(a+b*sin(d*x+c))^3,x, algorithm="giac")
 
output
((d*x + c)/b^3 + log(abs(tan(1/2*d*x + 1/2*c)))/a^3 - (2*a^4 - a^2*b^2 + 2 
*b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1 
/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*a^3*b^3) + (a^3*b*tan(1/2*d* 
x + 1/2*c)^3 + 4*a*b^3*tan(1/2*d*x + 1/2*c)^3 + 2*a^4*tan(1/2*d*x + 1/2*c) 
^2 + 7*a^2*b^2*tan(1/2*d*x + 1/2*c)^2 + 6*b^4*tan(1/2*d*x + 1/2*c)^2 + 7*a 
^3*b*tan(1/2*d*x + 1/2*c) + 8*a*b^3*tan(1/2*d*x + 1/2*c) + 2*a^4 + 3*a^2*b 
^2)/((a*tan(1/2*d*x + 1/2*c)^2 + 2*b*tan(1/2*d*x + 1/2*c) + a)^2*a^3*b^2)) 
/d
 
3.12.38.9 Mupad [B] (verification not implemented)

Time = 16.36 (sec) , antiderivative size = 3001, normalized size of antiderivative = 17.15 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+b \sin (c+d x))^3} \, dx=\text {Too large to display} \]

input
int(cos(c + d*x)^4/(sin(c + d*x)*(a + b*sin(c + d*x))^3),x)
 
output
log(tan(c/2 + (d*x)/2))/(a^3*d) + ((2*a^2 + 3*b^2)/(a*b^2) + (tan(c/2 + (d 
*x)/2)*(7*a^2 + 8*b^2))/(a^2*b) + (tan(c/2 + (d*x)/2)^3*(a^2 + 4*b^2))/(a^ 
2*b) + (tan(c/2 + (d*x)/2)^2*(2*a^4 + 6*b^4 + 7*a^2*b^2))/(a^3*b^2))/(d*(t 
an(c/2 + (d*x)/2)^2*(2*a^2 + 4*b^2) + a^2*tan(c/2 + (d*x)/2)^4 + a^2 + 4*a 
*b*tan(c/2 + (d*x)/2)^3 + 4*a*b*tan(c/2 + (d*x)/2))) - (2*atan((144*tan(c/ 
2 + (d*x)/2))/((64*b^2)/a^2 - (64*b^4)/a^4 - (64*a*tan(c/2 + (d*x)/2))/b + 
 (64*b*tan(c/2 + (d*x)/2))/a + (144*a^3*tan(c/2 + (d*x)/2))/b^3 - 144) + ( 
144*a)/(144*a*tan(c/2 + (d*x)/2) - (144*b^3)/a^2 + (64*b^5)/a^4 - (64*b^7) 
/a^6 - (64*b^2*tan(c/2 + (d*x)/2))/a + (64*b^4*tan(c/2 + (d*x)/2))/a^3) + 
64/(64*tan(c/2 + (d*x)/2) - (144*a)/b + (64*b)/a - (64*b^3)/a^3 - (64*a^2* 
tan(c/2 + (d*x)/2))/b^2 + (144*a^4*tan(c/2 + (d*x)/2))/b^4) + (64*tan(c/2 
+ (d*x)/2))/((64*b^2)/a^2 + (144*a^2)/b^2 - (64*a*tan(c/2 + (d*x)/2))/b + 
(64*a^3*tan(c/2 + (d*x)/2))/b^3 - (144*a^5*tan(c/2 + (d*x)/2))/b^5 - 64) + 
 64/(64*tan(c/2 + (d*x)/2) + (144*b)/a - (64*b^3)/a^3 + (64*b^5)/a^5 - (64 
*b^2*tan(c/2 + (d*x)/2))/a^2 - (144*a^2*tan(c/2 + (d*x)/2))/b^2) - (64*b*t 
an(c/2 + (d*x)/2))/(64*b - (64*a^2)/b + (144*a^4)/b^3 - (64*a^3*tan(c/2 + 
(d*x)/2))/b^2 + (64*a^5*tan(c/2 + (d*x)/2))/b^4 - (144*a^7*tan(c/2 + (d*x) 
/2))/b^6)))/(b^3*d) + (atan((((-(a + b)*(a - b))^(1/2)*((8*(14*a^9 + 4*a^3 
*b^6 + 28*a^5*b^4 - 15*a^7*b^2))/(a^6*b^5) + ((-(a + b)*(a - b))^(1/2)*((8 
*(16*a^2*b^10 - 12*a^4*b^8 + 14*a^6*b^6 + 16*a^8*b^4 - 12*a^10*b^2))/(a...